រូបមន្តអយល័រ-ម៉ាក្លូរីន

(ត្រូវបានបញ្ជូនបន្តពី Euler–Maclaurin formula)

ក្នុង​គណិតវិទ្យា រូបមន្តអយល័រ​-​ម៉ាក្លូរីន (Euler–Maclaurin formula) (ឬ​ហៅថា​រូបមន្តផលបូកអយល័រ) គឺជា​ទំនាក់ទំនង​រវាង​អាំងតេក្រាល​និង​ផលបូក។ វា​សំដែង​ជាផ​លបូក​នៃ​ស៊េរី​។ វា​ត្រូវបានគេ​ប្រើប្រាស់​ដើម្បី​គណនា​រក​តំលៃប្រហែលនៃ​​អាំងតេក្រាល​​ដោយ​ផលបូក​កំនត់​មួយ ឬ ច្រាស់​មក​វិញ​វា​ត្រូវ​បានគេ​ប្រើ​ប្រាស់​ដើម្បីរក​​ផល​បូក​នៃស៊េរី​កំនត់​​និង​​មិន​កំនត់​ដោយ​ប្រើ​អាំងតេក្រាល​និង​​ម៉ាស៊ីន​​សំរាប់​​គណនា។ រូបមន្ត​នេះ​ត្រូវ​បាន​រក​ឃើញ​យ៉ាង​ឯករាជ​ដោយ​គណិតវិទូស្វ៊ីស លេអូណា អយល័រ និង គណិតវិទូស្កុត កូលីន ម៉ាក្លូរីន ប្រហែលជាឆ្នាំ​១៧៣៥​។ អយល័រ​​បាន​ត្រូវ​ការ​វា​ដើម្បី​គណនា​ស៊េរីអនន្ត​​ដែល​ម៉ាក្លូរីន​​បាន​ប្រើវា​ដើម្បី​គណនា​​អាំងតេក្រាល​។

រូបមន្ត

កែប្រែ

គេ​មាន​ពីរ​ចំនួនគត់ p និង q ។ ចំពោះ​អនុគមន៍ f ជាអនុគមន៍ជាប់​និង​មាន​ដេរីវេ 2k ដងលើចន្លោះ   គេបាន​រូបមន្តអយល័រ-ម៉ាក្លូរីន​សំដែងដោយ

 

ដែល

 

  តំណាងអោយ​ពហុធាប៊ែរនូយី​ទី​  និង   គឺជាអនុគមន៍ខួប​។   តំណាងអោយ​ចំនួនប៊ែរនូយី​​៖

 
 

វិធីប្តូរអថេរ​អាច​ទទួល​បាន​រូបមន្ត​ដូចគ្នា​ចំពោះ​អនុគមន៍​មួយ​កំនត់​នៅ​លើ​ចន្លោះ​អង្កត់​មួយ។

សំរាយបញ្ជាក់

កែប្រែ

យើងនឹងស្រាយបញ្ជាក់រូបមន្តនេះនៅចន្លោះ   ដែល  

គេ​មាន​អនុគមន៍   មួយ​ជាប់​និង​មាន​ដេរីវេ​លើ   ។ ដោយ​ប្រើ​លក្ខណៈ​​ពហុធាប៊ែរនូយី :  

ដោយប្រើ​អាំងតេក្រាលដោយផ្នែក គេបាន  

ដោយដឹងថាចំពោះ   គេបាន   គេទាញបាន:

 

តាមទំនាក់ទំនងរវាងតួតគ្នាលើ k ពី   ទៅ   ដោយយក  គេទាញបាន:

 

ចុងបញ្ជប់តាមលក្ខណៈ :   គេទាញបាន :