វិធីសាស្រ្តហ្រ្វូបេនៀស

ក្នុងគណិតវិទ្យា វិធីសាស្រ្តហ្រ្វូបេនៀស(Frobenius method) រៀបរាប់អំពីរបៀបរកចំលើយរបស់សេរីអន្តន ចំពោះសមីការឌីផេរ៉ង់ស្យែលលំដាប់២ ក្នុងទំរង់

យើងអាចចែកដោយ z2 ដើម្បីបានសមីការឌីផេរ៉ង់ស្យែលមានរាង

ដែលមិនអាចដោះស្រាយបានដោយវិធីសាស្រ្តស៊េរីស្វ័យគុណ ប្រសិនបើទាំង p(z)/zq(z)/z2 មិនអាណាលីទីក(Analytic function=អនុគមន៍ទាល់)ត្រង់ z = 0 ។ វិធីសាស្រ្តហ្រ្វូបេនៀសអាចអោយយើងបង្កើតចំលើយរបស់ស៊េរីស្វ័យគុណ ចំពោះសមីការឌីផេរ៉ង់ស្យែលបែបណ្នឹង ដែលp(z) និងq(z) គឺអាណាលីទីកខ្លួនឯងត្រង់ 0 ឬជាអាណាលីទីកដ៏ទៃទៀត ហើយលីមីតរបស់វាទាំង២ត្រង់ ០​មាន​ ។ (ហើយមិនអន្តន) ។

ការពន្យល់

កែប្រែ

វិធីសាស្រ្តហ្រ្វូបេនៀសប្រាប់យើងថា យើងអាចរកចំលើយរបស់ស៊េរីស្វ័យគុណក្នុងទំរង់

 

ដោយធ្វើដេរីវេ

 
 

ដោយការជំនួស

 
 
 
 
 

កន្សោម   គឺត្រូវស្គាល់ថាជាពហុធាអាំងឌីកាល់(indicial polynomial) ដែលជាសមីការដឺក្រេទី២នៃ  

ដោយប្រើវា កន្សោមទូទៅនៃមេគុណនៃzk+r គឺ

 

មេគុណទាំងនេះត្រូវតែសូន្យ ព្រោះវាជាចំលើយនៃសមីការឌីផេរ៉ង់ស្យែល ដូច្នេះ

 
 
 

ចំលើយរបស់ស៊េរីទាំងនេះជាមួយAkខាងលើ

 

នាំអោយ

 

បើយើងជ្រើសរើសឫសមួយក្នុងចំនោមឫសដ៏ទៃទៀតជាពហុធាអាំងឌីកាល់ ចំពោះ r in Ur(z) យើងទទួលបានចំលើយមួយចំពោះសមីការឌីផេរ៉ង់ស្យែល ។ ប្រសិនបើភាពខុសគ្នារវាងឫស គឺមិនមែនជាចំនួនគត់ យើងទទួលបានចំលើយមួយផ្សេងទៀតដែលជាចំលើយឯករាជ្យលីនេអ៊ែក្នុងឫសផ្សេងទៀត ។

ឧទាហរណ៍

កែប្រែ

យើងដោះស្រាយ

 

ចែកនឹង z2 គេបាន

 

ប្រើចំលើយរបស់ស៊េរី

 
 
 

ឥឡូវ ជំនួស

 
 
 

យើងត្រូវសំរួលការបូកចុងក្រោយ

 
 

យើងអាចយកធាតុមួយចេញពីការបូកដែលចាប់ផ្តើមដោយ k=0 ដើម្បីទទួលបានការបូកដែលចាប់ផ្តើមដូចគ្នា

 
 
 
 

យើងទទួលបានចំលើយឯករាជ្យលីនេអ៊ែ​ ដោយដោះស្រាយពហុធាអាំងឌីកាល់r(r-1)-r+1 = r2-2r+1 =0 ដែលផ្តល់អោយឫសឌុបនៃ១ ។ ដោយប្រើឫសនេះ យើងយកមេគុណនៃzk+r-2 ស្មើសូន្យ ដែលផ្តល់អោយយើងនូវ

 
 

ដោយអោយលក្ខខណ្ឌដើមខ្លះៗ យើងអាចរកចំលើយក្នុងទំរង់ជាស៊េរីស្វ័យគុណ ។

ដោយប្រភាគនៃមេគុណ   គឺជា អនុគមន៍ប្រភាគ ស៊េរីស្វ័យគុណអាចត្រូវសរសេរជា ស៊េរីស្វ័កុណដែលមានប្រភាគនែមេគុណ បន្តលំដាប់(hypergeometric series) ។